
Advanced Software for the Calculation of 
Thermochemistry, Kinetics and Dynamics
http://www.mcs.anl.gov/scidac/beskinetics

ANL BES-SciDAC program has two inter-related projects
• Parallelization of Cumulative Reaction Probabilities (CRP)
• Parallel Implementation of 

Subspace Projection Approximate Matrix  (SPAM) method

CRP (Stephen Gray and Al Wagner)
• computationally intensive core of reaction rate constants
• mathematical kernel (all matrices are sparse with some structure):

- method 1: - iterative eigensolve (imbedded iterative linearsolves)
- clever preconditioning important
- portability based on ANL PETSc library of kernels

- method 2: - Chebyschev propagation (=> matrix vector multiplies)
- novel finite difference representation (helps parallelize) 

• programming issues:
- parallelization 
- exploiting data structure (i.e., preconditioning)



Advanced Software for the Calculation of 
Thermochemistry, Kinetics and Dynamics

SPAM (Ron Shepard and Mike Minkoff)
• novel iterative method to solve general matrix equations

- eigensolve - linear solve - nonlinear solve
• applications are widespread 

- in chemistry: CRP, electronic structure (SCF, MRSDCI,…)
• mathematical kernel:

- related to Davidson, multigrid, and conjugate gradient methods
- subspace reduction (requiring usual matrix vector multiplies) 
- projection operator decomposition of matrix vector product 
- substitution of user-supplied approximate matrix 
in computationally intensive part of decomposition

- sequence of approx. matrices => multilevel method
• programming issues:

- generalization of approach (only done for eigensolve)
- incorporation into libraries (connected to TOPS project part at ANL)
- test of efficacy in realistic applications (e.g., CRP)
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Parallelization of Cumulative Reaction Probabilities (CRP) 
Stephen Gray and Al Wagner (Argonne National Laboratory)

• Cumulative Reaction Probabilities (CRP)
- computational core of reaction rate constants
- exact computation computational intensive
- approximate computation underlies 
all major reaction rate theories in use

=> efficient exact CRP code will
- give exact rates (if the computed forces are accurate)
- calibrate ubiquitous approximate rate methods

• Two methods:
– Time Independent (Miller and Manthe, 1994, and others)
– Time Dependent (Zhang and Light, 1996, and others)

• Highly parallel approaches to both methods being pursued



Parallelization of Cumulative Reaction Probabilities 
Time Independent Approach

• N(E) = Σk pk(E,J)
where pk(E,J) = eigenvalues of Probability Operator:

P(E) = 4 εr
1/2 (H+iε-E)-1 εp (H-iε-E)-1 εr

1/2

where iεx = absorbing diagonal potentials
= imaginary potentials

H = hamiltonian (differential operator)
=> for realistic problems

size ~105x105 or much larger
number of eigenvalues < 100

• iterative approach
macrocycle of iteration for eigenvalue
microcycle of iteration for

action of Green’s function (H-iε-E)-1

=> linear solve
Action 

of 
1st Green's Fcn 

on 
current vector

Action 
of  

2nd Green's Fcn 
on 

current vector

Eigenvalue 
Cycle
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Time Independent Approach

• Code built on PETSc (http://www.mcs.anl.gov/petsc) -> TOPS

• PETSc: data structure, GMRES linear solve, preconditioners
USER: Lanczos method for eigensolve

• Future: user supplied preconditioners

Computation and Communication Kernels
MPI, MPI-IO, BLAS, LAPACK

Profiling Interface

PETSc PDE Application Codes

Object-Oriented
Matrices, Vectors, Indices

Grid
Management

Linear Solvers
Preconditioners + Krylov Methods

Nonlinear Solvers,
Unconstrained Minimization

ODE Integrators Visualization

Interface

http://www.mcs.anl.gov/petsc
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Time Independent Approach

Performance:

-model problem
- Optional number of dimensions
• Eckhart potential along rxn coord.
• parabolic potential perpendicular
to reaction coord.

- DVR representation of H

-Algorithm options
- Diagonal preconditioner
- other PETSc preconditioners slower

-Computers
- NERSC SP
- others include SGI Power Chanllenge,
Cray T3E 100
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Time Independent Approach

Future Preconditioners:
• SPAM (see next poster) great scales

Exact H performance poorly
- storage
- banded

matrix
inversion

• Sparse optimal similarity transforms (Poirier) 

IF Q =                         THEN find optimal Q such that QHQT =
optimal block diagonal ->
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Time Dependent Approach

N(E) can be found from time dependent transition state wavepackets (TSWP)
(see Zhang and Light, J. Chem. Phys. 104, 6184 (1996))

N(E) = ΣM Ni(E)  
where Ni(E) α Im<φi(E)|Fφi(E)>

where F      = differential flux operator
φi(E) α ∫exp(iEt)ψi(x,t) dt

where TSWP ψi(x,t) from i∂/∂t ψi(x,t) = H ψi(x,t)
where H is Schroedinger Eq. Operator

Work
• M different TSWPs (each independent of other)
• each TSWP 
- propagated over time
- Nt time steps
- each time step propagation dominated by H ψi multiply
=> CPU work = M Nt (work of H ψi multiply)
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Time Dependent Approach

Solution Strategy

• Trivial parallelization over M wavepackets
Nontrivial parallelization for wavepacket propagation

• Real Wavepackets (TS-RWP)
(K. M. Forsythe and S. K. Gray, J. Chem. Phys. 112, 2623 (2000))

- half the storage, twice as fast relative to complex wavepackets
- Chebyshev iteration for propagation
- Hψi work -> action of second order differential operators
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Solution strategy (more)
• Dispersion Fitted Finite Difference (DFFD)

(S. K. Gray and E.M. Goldfield, J. Chem. Phys. 115, 8331 (2001))
- finite difference evaluation of action of differential operators
- optimized constants to reproduce dispersion relation

(dispersion related momentum to kinetic energy)
- different optimized constants for selected propagation error ε

��x.error for 3D H+H2
Reaction Probability vs.
order of finite difference

- parallelize via decomposition of ψi in x
DFFD => less edge effects inducing processor communications 
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Parallelization of Cumulative Reaction Probabilities 
Time Dependent Approach

Preliminary Results

• OH+H2 reaction 
- 6 dimensions
- zero total ang. mom.

• Wavepacket propagated 
reaction probability

• RWP + DFFD propagation 
technique

• up to 4 WinterHawk processor
(MPI with shared memory off)
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Subspace Projected Approximate Matrix: SPAM
Ron Shepard and Mike Minkoff (Argonne National Laboratory)

• New iterative method to solving general matrix equations
– Eigenvalue
– Linear
– Non linear

• Method
– Based on subspace reduction, projection operators, decomposition, 

sequence of one or more approximate matrices

• Extensions
– Demonstrated for symmetric real eigensolves
– Demonstrations on linear and non-linear equations planned

• Applications
– Applicable to problems with convergent

sequences of physical or numerical approximations
– Parallelizable, multi-level library implementations via TOPS



Subspace Projected Approximate Matrix: SPAM
Method

• Subspace iterative solution to eigenvalue, linear, and nonlinear problems
e.g. eigenvalue problem  (H – λj )vj = 0

• Subspace iterative solutions have form vj = Xn cj
where: Xn = {x1,x2,…,xn}

• cj is solved in a subspace: Hn cj = λn
j cj

where: Hn = (Wn)T Xn

where: Wn = H Xn <---for N>>n, where all the work is

• New xn+1 vector from residual:  rn+1 = (Wn-λn
j Xn)cj

• SPAM gives more accurate or faster converging way to get xn+1 in 3 steps



Subspace Projected Approximate Matrix: SPAM
Method

Step 1: Assemble and apply Projections Operators on current vector

Pn xn+1 (=Xn[Xn]T xn+1) Qn xn+1 (= xn+1 - Pn xn+1)

where
n trial vectors n+1 trial vector  exact         matrix-vector         subspace

(already processed) xn+1 matrix            product          matrix
(Xn) 

== -=

=

=



Subspace Projected Approximate Matrix: SPAM
Method

Step 2: Decomposition and Approximation of H rn+1

H xn+1 = (Pn+Qn) H (Pn+Qn) xn+1

cheap subspace operations expensive full space
operation

cheap approximation
to full matrix

Step 3: Solve approximate subspace problem
- solution is xn+1

= ++

~ ++ +

+



Subspace Projected Approximate Matrix: SPAM
Method

SPAM properties:

• projection operators => convergence from any approx. matrix

• multi-level SPAM with dynamic tolerances
QnHQn approximated by Q(1)nH(1)Q(1)n

Q(1)nH(1)Q(1)n approximated by Q(2)nH(2)Q(2)n

Q(2)nH(2)Q(2)n approximated by Q(3)nH(3)Q(3)n…

• tens of lines of code added to existing iterative subspace eigensolvers

• highly parallelizable

• applicable to any subspace problem



Subspace Projected Approximate Matrix: SPAM
Method

SPAM properties (broad view):

• Relation to other subspace methods (e.g., Davidson)
– More flexible (sequence of approx. matrices - no sequence => SPAM= Davidson)
– If iteration tolerances are correct, always no worse than Davidson 

• Relation to multigrid methods
– SPAM sequences of approx. matrices ~ multigrid sequences of approx. grids
– Subspace method => solution vector composed of multiple vectors 

Multigrid methods => single solution vector that is updated

• Relation to preconditioned conjugate gradient (PCG) methods
– SPAM has multiple vectors and approximations always improved by projection

PCG has a fixed single preconditioner and single vector improved by projection

• Deep injection of physical insight into numerics
– Application experts can design physical approximation sequences
– SPAM maps approximation sequences onto numerics sequences
– Projection operators continually improve the approximations

=> coarse approximations can still be numerically useful



Subspace Projected Approximate Matrix: SPAM
Extensions

Mathematical Extensions

• Eigensolves
– Symmetric real

• Done with many applications 
(http://chemistry.anl.gov/chem-dyn/Section-C-RonShepard.htm)

• Code available 
(ftp: ftp.tcg.anl.gov/pub/spam/{README,spam.tar.Z})

– Generalized symmetric planned
– Generalized complex hermitian planned
– General complex non-hermitian planned

• Linear solves planned

• Nonlinear solves planned

• Formal connection to multigrid and conjugate gradient methods in progress



Subspace Projected Approximate Matrix: SPAM
Applications

broad view:

• Any iterative problem solved in a subspace
with a user-supplied cheap approximate matrix (TOPS connection)

• What is a cheap approximate matrix?
• Sparser
• Smaller underlying basis
• Lower-order expansion of matrix elements
• Coarser underlying grid 
• Lower-order difference equation
• Tensor-product approximation 
• Operator approximation
• More highly parallelized approximation

• Terascale Optimal PDE Siumlations (TOPS) connection
– Basic parallelized multi-level code with user-supplied approx. matrix
– Template approximate matrices stored in library



Subspace Projected Approximate Matrix: SPAM
Applications

Two Chemistry Applications:
• Cumulative Reaction Probability (other poster)
• Electronic structure:

Non Chemistry Tensor Product Model
• 4x4 tensor products + tridiagonal perturbation
• Approx matrix is 4x4 tensor
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